
Journal of Sound and Vibration (1998) 209(3), 443–472

EVALUATING BASINS OF ATTRACTION IN
NON-LINEAR DYNAMICAL SYSTEMS USING

AN IMPROVED RECURSIVE BOUNDARY
ENHANCEMENT (RBE)

N. A. A

Department of Civil Engineering, University of East London, Barking Campus,
Dagenham RM8 2AS, England

(Received 16 October 1996, and in final form 23 July 1997)

An improvement to the computational algorithm known as Recursive boundary
enhancement (RBE) is described. This updated algorithm produces global stability phase
space diagrams in periodically forced differential systems. These equations being derived
from the dynamics of engineering structures with non-linear responses. The algorithm uses
a process of boundary grid refinement to produce a greatly enhanced procedure which is
accurate and less computationally expensive than the standard grid of starts (GOS)
method. The algorithm focuses on the boundaries of the catchment basins which need the
most attention. This concentration on the boundaries cannot be made in an a priori manner
as the boundaries are initially unknown. While the algorithm is proceeding concepts of
parent cells, child cells and cell division are used to determine the location of the
boundaries. The role of cell neighbourhood comparison is modified, in the improved
algorithm, to provide a handle to control accuracy and computational speed. The necessity
for recursion in the algorithm is discussed. The procedure is valid for both non-fractal and
fractal boundaries. A comparison of the old and new RBE algorithms and other methods
such as GOS, SCM and ICM mapping methods are made to evaluate computational
efficiency and accuracy.

7 1998 Academic Press Limited

1. INTRODUCTION

In non-linear dynamics, the analysis of global instability phenomena such as the
invariant manifold tangency induced boundary explosions [1–4] can result in events of
far more relevance to engineers than the accurate knowledge of local bifurcation
events. In a real life situation initial conditions are never precisely known and transient
motions within a perhaps chaotic and fractal paradigm require a knowledge of catchment
regions of various attracting sets. Thus it could be argued that events such as capsizes
of boats [5] and other marine structures, such as floating compliant drilling platforms,
owe more to the destruction of coherent global boundaries than to the local bifurcating
demise of the attracting sets. The ideas presented here represent an automotive
strategy to produce accurate portraits of the basins or regions of attraction with a
great computational saving. The improvements to the basic algorithm presented in [6]
represent an investigation of the role that the comparative module plays in the accuracy
and computational speed of the Recursive Boundary Enhancement (RBE) algorithm.

0022–460X/98/030443+30 $25.00/0/sv971234 7 1998 Academic Press Limited

. . 444

2. PRELIMINARIES

Consider a general non-linear harmonically driven differential oscillator

ẍ+ h(ẋ, x)=F sin (vt).

This can be expressed as the following simultaneous differential equations

x� ˙=q� (x� , t), q� (x� , t)=q� (x� , t+T) (1)

where x� is a 2-tuple of state variables, q� is a vector function of period T and t is the
independent variable. The Poincaré section P can be defined as

P= {(x, ẋ, t)$R3: t= t0 + iT, i$Z}.

From this periodic sampling of the solution space to (1) the Poincaré map can be defined
as the following vector equation:

x� i+1 = f� (x� i). (2)

A periodic cycle is now represented by a point or set of points dependent on its periodicity.
Thus, a period one solution point is one at which consecutive iterates of equation (2) result
in identical values xi+1 = xi .

The grid of starts (GOS) [1, 7] creates a rectangular grid of points across the Poincaré
section P. Each of these grid points is used as an initial condition for the Poincaré map
(2). Each iterate of (2) requires the differential system to integrate numerically using a
Runga–Kutta type technique. Now if x� 1 = f� (x� 0) and x� 2 = f� (x� 1)= f� (f� (x� 0)) which will be
notated as x� 2 = f� (2)(x� 0), each point x� 0 is iterated n times to give

x� n = f� (n)(x� 0). (2a)

In P each point x� 0 is mapped until it converges to some stable solution or infinity. Period
one solutions can be located by this method while period s solutions require every sth
iterate to be compared thus

x� sn = f� (sn)(x� 0). (2b)

Chaotic (non-periodic solution) require their own special procedures for identification
[7, 8]. Every stable solution can be numbered and thus each grid point can be coloured
according to which solution it is attracted to. When this is completed for the entire grid,
the resulting diagram describes the basins of attraction of the different attracting sets. The
finer the grid the more accurate the resultant picture becomes, however the computational
effort increases inversely with the square of the distance between the grid points.

3. BASIC CONCEPTUAL FRAMEWORK

The basic idea arises from its progenitor the GOS method. The basic procedure is
described below.

(i) The region of phase space P that is of interest is divided into a coarse mesh of cells.
The bottom left-hand corner of each cell is used as an initial condition. Equation (2b) is
evaluated for each start and a pattern of catchment basins is built up in the standard way.
If each attracting set is numbered then each cell can also be numbered according to which
catchment basin it appears in.

(ii) Each cell, considered in a row by row fashion, is systematically compared with its
neighbouring cells. The basic comparative module defines neighbouring cells as ones directly
above and below, left and right. More complex comparative modules, which include

�y�y
�y

Parent cell Children

Corner calculated
using equation (2a)

1a 1b

1c 1d

1

- 445

diagonal neighbours, are discussed in section 6 and constitute the main modification to
the RBE algorithm. If neighbouring cells are in dissimilar catchment basins they are
considered to be on a boundary and are marked as boundary cells. Cells that are in the
same catchment basin as all their neighbours are considered non-boundary cells.

(iii) All cells are quartered: all cells can be thought of as parent cells producing children.
Consider Figure 1: the 1a child cell takes its value directly from its parent requiring no
evaluation of equation (2b). Child cell 1a is considered a good child cell. Child cells 1b,
1c and 1d however have to be evaluated somehow. For non-boundary parent cells, child
cells 1b, 1c and 1d are approximated by taking exactly the same value as the parent cell.
No evaluation of equation (2b) is performed here. In this case child cells 1b, 1c and 1d
are considered bad child cells. For boundary parent cells, child cells 1b, 1c and 1d are
calculated from equation (2b), they are not approximated and hence good child cells.

(iv) Each child of the boundary parent cells is systematically, in a row by row fashion,
compared with its neighbouring child cells. If neighbouring child cells are in dissimilar
catchment basins they are both considered to be on a boundary and are marked as boundary
cells. Cells that are in the same catchment basin as all their neighbours are considered
non-boundary cells. Children of non-boundary parent cells are considered to remain as
non-boundary cells if not otherwise modified.

Basically each child cell has three properties: (1) whether it is boundary or non-boundary;
(2) whether it is good or bad; (3) to which catchment basin it belongs.

(v) Children go on to become parents in their own right. Loop round to (iii) until the
required resolution of the catchment basins and boundaries is achieved. The only caveat
is when a bad non-boundary child cell becomes a parent all four of its children will be bad.

The great computational saving is made by the presence of bad child cells which are
given approximated values for equation (2b). The greater the percentage of bad child cells
the greater the computational saving over the ordinary grid of starts method.

In Figure 2(a) the four parent cells produce 16 child cells in Figure 2(b). As cells 2, 3
and 4 are boundary cells all child cells 2x, 3x and 4x, where x$(a, b, c, d), are calculated
from (2b), thus are good child cells. Only cells 1b, 1c and 1d are bad child cells. At stages
(v) and (iii) only the 7 boundary cells are divided into four reliable good cells the other
non-boundary cells are divided but approximate values of equation (2b) are used.

By the third generation of cells the results would be exactly the same as the GOS method
with 64 cells. However only 34 cells would have been actually calculated, a 46% saving
in the number of evaluations of equation (2b). This is just at the third generation, as the
refinement of the cell mesh is increased, the saving over the conventional grid of starts is
increased.

Figure 1. Cell division.

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

y
y
y
y
y

y
y
y
y
y

y
y
y
y
y

y
y
y
y
y

y
y
y
y
y

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

y
y
y
y
y
y

y
y
y
y
y
y

y
y
y
y
y
y

y
y
y
y
y
y

y
y
y
y
y
y

(a
)

A
ct

ua
l

bo
un

da
ry

1
2

3
4

2a
1b1d

1c3a
4a 2c

2d 2b

(b
)

. . 446

F
ig

ur
e

2.
C

el
l
ge

ne
ra

ti
on

s.
(a

)
4

P
ar

en
t

ce
lls

,
4

go
od

ce
lls

,
0

ba
d

ce
lls

,
3

fir
st

ge
ne

ra
ti
on

bo
un

da
ry

ce
lls

2,
3

an
d

4.
(b

)
16

C
hi

ld
ce

lls
,
15

go
od

ce
lls

,
3

ba
d

ce
lls

,
7

se
co

nd
ge

ne
ra

ti
on

bo
un

da
ry

ce
lls

.

- 447

4. NECESSITY OF A RECURSIVE ALGORITHM

The procedure in section 3 will produce a good approximation to the boundaries of a
catchment basin but suffers from an algorithmic problem for certain boundary topologies.

Consider Figure 3(a). Six parent cells are evaluated and 3 boundary cells result from
neighbourhood comparisons. Because of the nature of the boundary and the edge of the
grid across region Poincaré section P, the parent cell 6 is not marked as a boundary cell
(as cell 6’s lower-left corner is on the same side of the boundary as its neighbours 5 and
4). In Figure 3(b) problems arise about the boundary region in both parent cells 6 and
5. Remember only cells marked as boundary cells are compared with their neighbours.

Observe child 4d and compare it with its neighbour 6b. Cell 6b parent 6 was a
non-boundary cell thus 6b is a bad cell, with an approximated value. In fact 6b is considered
to be in the same catchment basin as 6. Thus good cell 4d and bad cell 6b are thought
to be on different sides of the boundary and hence 6b is marked as a boundary cell but
for the wrong reason because cells 4d and 6b are in reality on the same side of the
boundary. It would have been more beneficial if 6b was evaluated accurately by using
equation (2b); converting a bad cell into a good cell. However even this modification is
not sufficient because the 4d–6b comparison would now result in 6b being marked as a
non-boundary cell as they are on the same side of the boundary. If the comparison 6a–6b
was made, both 6a and 6b would be marked as boundary cells. However the 6a–6b
comparison is never made as both 6a and 6b were marked as non-boundary cells because
their parent 6 was a non-boundary cell.

Thus it is clear that the basic algorithm will suffer badly in certain situations. The
problems with the above algorithm are: some cells are not marked as boundary cells and
hence neighbourhood comparison is not made, when in fact this comparison is required;
the presence of bad cells in the comparison is a source of potential error.

In the ideal scenario the 6a–6b comparison would be made, 6c, 6d and 5d would all be
converted to good cells and all neighbourhood comparisons would be made for the
identification of the next generation boundary cells. How can this be achieved?

Consider the following addition to the algorithm in section 3. This is now the basis of
the RBE algorithm.

(iv.a) If two neighbouring cells are in dissimilar catchment basins but one cell is in fact
a bad child cell (i.e., a cell with an approximate value for equation (2b)) then the bad child
cell is evaluated exactly using equation (2b) and thus it is converted into a good child cell.
Then the comparison which will identify the second/next generation boundary cells is
always based on a comparison between good cells.

(iv.b) The comparison between cells in similar catchment basins and hence resulting in
a non-boundary cell could be based on the good cell–bad cell comparison which may be
in error. This good–bad cell comparison is algorithmically necessary as if it were not
included then all the cells would be compared with their neighbours and be converted to
good cells resulting in an algorithm very similar to the much simpler GOS method.

(iv.c) All newly calculated child cells are marked as boundary cells and immediately
compared with all their neighbouring cells. This immediate comparison is required so that
the sequence in which the boundary cells are compared is not a factor in the algorithm.
In fact this means a recursive type procedure. As one cell becomes a boundary cell, it is
immediately compared with its neighbourhood. Other cells may become boundary cells
subsequently. Thus the process of addition of newly calculated cells will spread recursively
until all necessary cells are identified and calculated correctly.

In Figure 3(b) cells 6b, 6c, 6d and 5d would all be converted to good cells and 6a, 6b,
6c and 5d marked as boundary cells by the above modification to the algorithm.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

y
y
y
y

y
y
y
y

y
y
y
y

y
y
y
y

y
y
y
y

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

y
y
y
y
y

y
y
y
y
y

y
y
y
y
y

y
y
y
y
y

y
y
y
y
y

5
6

3
4

1
2

5a

5d
6c

6d 6b

3a

4d 4b
4a 2a

(a
)

(b
)

. . 448

F
ig

ur
e

3.
P
ro

bl
em

to
po

lo
gi

es
.
(a

)
6

P
ar

en
t

ce
lls

,
3

bo
un

da
ry

ce
lls

.
(b

)
24

C
hi

ld
ce

lls
,
15

go
od

ce
lls

,
9

ba
d

ce
lls

?
8
+

?
bo

un
da

ry
ce

lls
.

- 449

5. FRACTAL AND NON-FRACTAL BOUNDARIES

For non-fractal boundaries and ones that are simply connected within the problem
domain (the grid across the Poincaré section P) the RBE algorithm will produce exactly
the same results as the GOS method at a fraction of the computational effort. This is
providing one pair of boundary cells are located on each boundary. To achieve this does,
in practice, require some knowledge of the dynamic system under investigation. This means
defining the initial cell size for the RBE at such a value that this condition is satisfied. If
the initial cell size for the RBE is large then there will be a larger number of cell generations
and hence divisions resulting in a greater computational saving over GOS. However too
large an initial cell size will result in missing certain boundaries which are not simply
connected to other identified boundaries within the problem domain. This is where the
initiation procedure cannot be totally automated. However it is worth noting that the real
computational saving increases as the cell size reduces. Thus it makes more sense to err
on the side of caution and start off with at least an 8×8 or even 16×16 grid. (Remember
that this cannot be a general rule but is a guide and has been used for all the present
studies.)

For fractal boundaries, ones that are not simply connected within the problem domain,
the RBE algorithm works very well but suffers from certain problems when thin whiskers
are present. Considering Figure 4(a), only cell 1 is actually inside the whisker boundary.
In Figure 4(b) consider the cell 11d. This cell is also, in fact, inside the whisker boundary
but because its parent 11 was not a boundary cell it is not evaluated. Note that the recursive
procedure of section 4 would not cause it to be evaluated because cells 6a, 6b, 6d, 11a etc.,
cells between the known boundary cells and 11d, are all just on the wrong side
(algorithmically) of the boundary and hence the algorithm will not proceed at this
resolution to evaluate 11d. However as the cell’s size is reduced this whisker would be
successfully described. Simply speaking if the whisker width is less than the cell width then
RBE may not pick up isolated cells such as 11d in Figure 4(b). Thus there will be a small
difference (1/64 in Figure 4(b)) in the description of whiskers between the grid of the start
method and RBE for a prescribed cell size when there are fractal boundaries in the problem
domain.

6. RBE COMPARATIVE MODULES IN NUMERICAL STUDIES

The question of whom should be the ‘‘neighbouring cells’’ to a particular cell is a matter
for discussion. In sections 3, 4 and 5 the rather arbitrary definition of those cells directly
above and below, left and right is used and shall be subsequently known as the comparative
module 1. Essentially the old RBE algorithm [6]. Flowchart Figure 12 shows the three
modules investigated. Module 3 defines ‘‘neighbouring cells’’ far more widely than module
1 thus leading to a greater number of boundary cells. Module 2 includes diagonal cells
in the neighbourhood but is a halfway-house between modules 1 and 3.

Numerical studies have been performed to assess the computational accuracy and
efficiency of the various modules used in defining ‘‘neighbouring cells’’ in the RBE
algorithm. Hence the modified RBE is compared with the GOS method and simple cell
mapping method (SCM) of reference [9] for various modules. The dynamic system used
for the testing is the Henon map:

xi+1 =A− x2
i −Byi

yi+1 = xi . (3)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

y
y
y
y

y
y
y
y

y
y
y
y

y
y
y
y

�
�
�

�
�
�

�
�
�

y
y
y

y
y
y

y
y
y

(a
)

(b
)

13
14

15
16

9
10

12

6
7

8

3
4

5 1
2

11

2a6a
6b6d

11
d

11
a

. . 450

F
ig

ur
e

4.
T

hi
n

w
hi

sk
er

s.
(a

)
16

P
ar

en
t

ce
lls

,
3

bo
un

da
ry

ce
lls

.
(b

)
64

C
hi

ld
ce

lls
,
25

go
od

,
39

ba
d,

6
bo

un
da

ry
ce

lls
.

- 451

The problem domain was (−2·5, −2·5) to (2·5, 4). A bound to restrict exponentially large
phase space co-ordinates was used at =xi =+ =yi =E 10. Points that map outside this bound
are considered to pass to an attractor at infinity. The Henon A parameter was 0·9. For
RBE and GOS methods 10 iterates of (3) define the basin of attraction of the non-infinity
attracting set. While for SCM 10 iterates of the cell mapping derived from (3) were used.

6.1. - ?
Consider Figure 5(a) the percentage error in the RBE modules 1, 2 and 3 and SCM

methods compared with the GOS method is monitored across a non-fractal to fractal
region of parameter space. A 512×512 cell GOS was performed and then a 512×512
cell RBE and SCM over the problem domain for a fixed parameter (A, B) set. Each cell
of the RBE and SCM is compared with the equivalent GOS cell and the percentage error,
which is basically the percentage deviation from the GOS, was calculated. The fractal
boundary caused by a homoclinic tangency was located using [8]. In the non-fractal
boundary region both SCM and RBE produce quite good results. RBE modules 1, 2 and
3 are in fact exactly the same as the GOS method here. In the fractal boundary region
the percentage error in the SCM becomes much greater, increasing ten-fold, to about 3%
across the problem domain. For RBE, in the fractal boundary region, the percentage error
also increases but still remains quite small at less the 0·5% across the problem domain.
Figure 5(b) indicates the variation in error of the RBE modules versus the GOS drawn
at a different scale. The errors in the RBE are mainly in the fractal regime. Module 1 is
the least accurate and module 3 the most accurate. Module 3 here produces an error of
less than 0·05% across the parameter range. Figure 6 displays an instance in the fractal
regime of: (a) the catchment basin; (b) the errors in the SCM method; (c) the errors in
RBE module 1; and (d) the errors in RBE with module 3. Note that while the errors in
the SCM represent only a 3·06% deviation from the GOS across the problem domain
graphically it appears that there is quite a noticeable error. The errors for SCM seem to
be predominately located around the tips of large tongues which intrude into the catchment
basin and at the boundaries of the catchment basin. The generally accepted result [9] that
SCM is in fact not very good at describing fractal boundaries accurately is confirmed.
While the errors in RBE are located in very fine whiskers which are generally on the
extreme edges of the catchment basin, module 3 is almost ten times more accurate than
module 1 of the RBE methods.

6.2. -

 ?
Consider Figure 7 which results from the same analysis as Figure 5. The number

evaluations of equation (3) for RBE modules 1, 2 and 3 and SCM are compared with GOS
across a problem domain. The time taken to complete a portrait of a catchment basin is
proportional to the number of iterates of equation (3). For differential systems, which
require numerical integration, each iterate is expensive and this is major factor in the
overall computational time taken. For the Henon map each iterate is cheap
computationally so other methodological overheads associated with RBE and SCM are
important for equation (3). However the main aim of this paper is directed towards
differential systems where these overheads have less effect on the overall time taken, thus
the number of iterates is important. The percentage of function evaluations is a comparison
of the number of iterates of equation (3) for RBE and SCM against GOS. In the
non-fractal region SCM requires less than 15% of the computational effort of the GOS,
while RBE modules 1, 2 and 3 only require about 5%. In the fractal boundary region the
two methods become more comparable and SCM moves up to 22% and RBE module 1

0.
5

0.
0

0.
1

H
en

on
 p

ar
am

et
er

 B
 w

it
h

 A
 =

 0
.9

% Error compared with GOS
(a

)

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
0

N
on

-f
ra

ct
al

bo
u

n
d

ar
ie

s
F

ra
ct

al
bo

u
n

d
ar

ie
s

S
C

M

R
B

E
 m

od
u

le
s

1,
2

an
d

 3

. . 452

F
ig

ur
e

5(
a)

—
(C

ap
ti
on

on
fa

ci
ng

pa
ge

)

0.
05

0.
00

0.
2

H
en

on
 p

ar
am

et
er

 B
 w

it
h

 A
 =

 0
.9

% Error compared with GOS

(b
)

0.
45

1.
0

0.
0

N
on

-f
ra

ct
al

bo
u

n
d

ar
ie

s
F

ra
ct

al
bo

u
n

d
ar

ie
s

R
B

E
 m

od
u

le
 1

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
1

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

R
B

E
 m

od
u

le
 2

R
B

E
 m

od
u

le
 3

- 453

F
ig

ur
e

5.
(a

)
C

om
pa

ri
so

n
of

er
ro

rs
of

SC
M

an
d

R
B

E
ve

rs
us

G
O

S
at

51
2
×

51
2

re
so

lu
ti
on

.
(b

)
C

om
pa

ri
so

n
of

er
ro

rs
of

R
B

E
w

it
h

m
od

ul
es

1,
2

an
d

3
ve

rs
us

G
O

S
at

51
2
×

51
2

re
so

lu
ti
on

.

(a
)

(b
)

(d
)

(c
)

. . 454

F
ig

ur
e

6.
G

ra
ph

ic
al

co
m

pa
ri
so

n
of

er
ro

rs
of

SC
M

an
d

R
B

E
ve

rs
us

G
O

S.
H

en
on

pa
ra

m
et

er
A

=
0·

9,
B

=
0·

95
(5

12
×

51
2

re
so

lu
ti
on

).
(a

)
R

B
E

m
od

ul
e

3
(a

lm
os

t
ex

ac
tl
y

th
e

G
O

S
re

su
lt
).

(b
)

E
rr

or
in

SC
M

(t
hi

s
re

pr
es

en
ts

a
3·

06
%

de
vi

at
io

n
fr

om
th

e
G

O
S

re
su

lt
).

(c
)

E
rr

or
in

R
B

E
m

od
ul

e
1

(t
hi

s
re

pr
es

en
ts

a
0·

45
%

de
vi

at
io

n
fr

om
th

e
G

O
S

re
su

lt
).

(d
)
E

rr
or

in
R

B
E

m
od

ul
e

3
(t
hi

s
re

pr
es

en
ts

a
0·

04
5%

de
vi

at
io

n
fr

om
th

e
G

O
S

re
su

lt
).

5 0
0.

1

H
en

on
 p

ar
am

et
er

 B
 w

it
h

 A
 =

 0
.9

% Function evaluation compared with GOS
30

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
0

N
on

-f
ra

ct
al

bo
u

n
d

ar
ie

s
F

ra
ct

al
bo

u
n

d
ar

ie
s

10152025

S
C

M

R
B

E
 m

od
u

le
 3

R
B

E
 m

od
u

le
 2

R
B

E
 m

od
u

le
 1

- 455

F
ig

ur
e

7.
C

om
pa

ri
so

n
of

co
m

pu
ta

ti
on

al
eff

or
t

of
SC

M
an

d
R

B
E

ve
rs

us
G

O
S

at
51

2
×

51
2

re
so

lu
ti
on

.

. . 456

about 16% of GOS. RBE modules 2 and 3 are computationally more expensive than SCM
in the fractal regime at this resolution. Clearly both SCM and RBE represent a
considerable computational saving over GOS. Note that RBE module 3 represents only
30% of the computational effort of GOS with at worst a 0·05% deviation in the present
studies.

6.3. ?
Consider Figure 8(a): this diagram compares the percentage error (averaged across the

parameter range tested in Figures 5 and 7) in evaluations for RBE and SCM with
increasing number of cells. While the averages cannot be defined very precisely and are
dependent on the sampling chosen, they do indicate the nature of general trends. The first
point on all graphs is at 64×64 cell resolution across the Poincaré section P. In this figure
both SCM and RBE errors reduce as the number of cells increase. Note the RBE modules
1, 2 and 3 are never that inaccurate always being less than 1% error from GOS regardless
of cell size and boundary type. Figure 8(b) is drawn at a different scale indicating the
comparative accuracy of RBE modules 1, 2 and 3.

6.4. ?
In Figure 9 the percentage of function evaluations for SCM remain constant at about

20% of GOS. Increasing the number of cells has no effect on computational saving over
GOS. For RBE modules 1, 2 and 3, increasing the number of cells reduces the relative
effort, computationally. The saving over GOS increases as the number of cells is increased.
Under these fractal boundaries SCM is computationally less expensive than RBE module
1 until a 512×512 cell resolution. At a 1024×1024 cell resolution, RBE modules 1 and
2 are computationally less expensive than SCM. What is clear from this figure is that the
use of RBE is only worth considering when quite high resolution portraits are needed when
the computational saving over GOS is apparent.

6.5.

Figure 9 is from Thompson’s escape equation [1, 5, 8] (a harmonically forced system
with non-linear softening stiffness)

ẍ+ bẋ+ x− x2 =F sin (vt+f). (4)

Figure 10 shows the gradual refinement process of RBE module 1 for the escape equation
parameters (b=0·1, v=0·85, F=0·075, f=0·0) with a Poincaré section displayed from
(x=−0·9, ẋ=−0·9) to (x=1·2, ẋ=0·9). A classical Runge–Kutta algorithm is used to
solve equation (4). The dots displayed in this diagram represent the position of a good
cell; i.e., there has been an accurate evaluation of equation (2b) at every dot. White space
indicates area where equation (2b) has been approximated. As should be expected all the
dots are congregated around the fractal basin boundaries of this problem.

7. ALGORITHMIC COMPARISONS

One way of considering the SCM method is in terms of the way in which it approximates
the Poincaré map (2). SCM basically divides the P into a grid of cells where each cell is
given a constant value of the Poincaré map (2) within that cell. This approximate constant
cell value becomes more accurate as an average across each cell as the cell size decreases.
However as the cell size decreases the computational effort increases. It is clear that in some
regions of the map (2) which are relatively flat, 1f �(x�)/1x� is small and the accuracy of the
SCM will be good. While in other regions of P where 1f �(x�)/1x� is large (e.g., boundary

0.
5

0.
0

64
2

N
u

m
be

r
of

 c
el

ls
 N

 x
 N

Average % error compared with GOS

(a
)

3.
5

10
24

2

1.
0

1.
5

2.
0

2.
5

3.
0

12
82

25
62

51
22

S
C

M

R
B

E
 m

od
u

le
s

1,
2

an
d

 3

- 457

F
ig

ur
e

8(
a)

—
(C

ap
ti
on

on
fo

llo
w

in
g

pa
ge

)

0.
05

0.
00

64
2

N
u

m
be

r
of

 c
el

ls
 N

 x
 N

Average % error compared with GOS

(b
)

0.
35

10
24

2

0.
10

0.
15

0.
20

0.
25

0.
30

12
82

25
62

51
22

R
B

E
 m

od
u

le
s

1

R
B

E
 m

od
u

le
s

2

R
B

E
 m

od
u

le
s

3

. . 458

F
ig

ur
e

8.
(a

)
E

ff
ec

ts
of

ce
ll

si
ze

on
av

er
ag

e
er

ro
rs

(a
ve

ra
ge

in
cl

ud
in

g
fr

ac
ta

la
nd

no
n-

fr
ac

ta
lb

ou
nd

ar
ie

s)
.(

b)
E

ff
ec

ts
of

ce
ll

si
ze

on
av

er
ag

e
er

ro
rs

(a
ve

ra
ge

in
cl

ud
in

g
fr

ac
ta

l
an

d
no

n-
fr

ac
ta

l
bo

un
da

ri
es

).

20 0
64

2

N
u

m
be

r
of

 c
el

ls
 N

 x
 N

% Function evaluation compared with GOS

80

10
24

2
12

82
25

62
51

22

103040506070

R
B

E
 m

od
u

le
 3

R
B

E
 m

od
u

le
 2

R
B

E
 m

od
u

le
 1

S
C

M

- 459

F
ig

ur
e

9.
E

ff
ec

ts
of

ce
ll

si
ze

on
co

m
pu

ta
ti
on

al
sp

ee
d.

H
en

on
pa

ra
m

et
er

A
=

0·
9,

B
=

0·
8.

(a
)

(b
)

(c
)

. . 460

F
ig

ur
e

10
.

D
is
tr

ib
ut

io
n

of
‘‘g

oo
d

ce
lls

’’
ac

ro
ss

P
oi

nc
ar

é
se

ct
io

n:
(a

)
64

×
64

ce
lls

;
(b

)
25

6
×

25
6

ce
lls

;
(c

)
51

2
×

51
2

ce
lls

.

- 461

regions) the SCM will not be so accurate. Thus SCM is highly sensitive to the cell size
at the boundaries of catchment basins. The results of this algorithmic problem are that
the described catchment basin boundary at one cell size can be substantially different to
that at a smaller cell size.

The ICM method [10] is a natural extension from Hsu’s SCM in that it seeks to perform
some linear interpolation from the centre to centre of cells so that in effect the Poincaré
map (2) is approximated by a piecewise bi-linear function with slope discontinuities at the
centre of the cells. (SCM is in a sense a piecewise constant function with step discontinuities
at the cell edges.) One could in fact go the whole way and introduce a bi-cubic spline
interpolation across the whole Poincaré section, thus including function and slope
continuity. However the main problem of large slope and curvature of Poincaré map (2)
is ignored in all these methods because the regions of high slope of (2) are initially
unknown. If it were possible to have more small cells in regions of high slope and curvature
of (2), a consistent accuracy across a Poincaré section could be achieved. While SCM, ICM
and any higher order interpolation method represent considerable computational saving
over the GOS, one would have to either compare the results with the GOS method to verify
accuracy which of course defeats the whole purpose of using such an approximate method,
or introduce some cell reduction procedure for self-validation. This repetitive cell reduction
and comparison is not a standard part of these methods. Note also Figure 6(b) which
shows that for SCM to prove accurate at the boundaries, a very large amount of small
cells would have to be used.

One of the main advantages of the GOS method from a researcher’s point of view, apart
from its extreme simplicity, is that the investigation of a sub-region Q of the Poincaré
section P can be achieved with practically no special configuration of the algorithm. The
problem with SCM, ICM etc. is that cells outside the region of interest may be required
by a solution trajectory i.e., one which may pass outside the sub-region Q and then back
inside Q in subsequent iterates of (2). Thus the smallest region that can be algorithmically
selected is that region which contains all the catchment basins of all the main attracting
sets, computationally almost the entire main area of interest of the Poincaré section. There
is considerable computational saving over the GOS in the case of where the region of
particular interest Q is almost the complete main area of interest of P. However when the
sub-region Q is for example only a small part of a catchment basin in P the region
algorithmically required (for the grid of cells) is often still almost the entire main area of
interest of the Poincaré section. Hence to achieve a similar picture resolution over a small
sub-region Q may require a vast number of cells outside this region of interest to be
calculated. The computational saving of SCM, ICM etc. becomes much more marginal
over the GOS in this case.

RBE is an extension and modification of the GOS method. It does not attempt to
approximate (2) but attempts to approximate the repeated iterate of (2) i.e., equation (2b).
RBE attempts to respond to the major difficulties in the cell mapping methods described
above.

First, since RBE is based on repetitive cell division a process of self-validation is already
built into the algorithm. It can keep a record of the percentage change in the areas of
catchment basins with each cell division.

Second, the good cells (one for which equation (2b) has been exactly evaluated) are all
located at the boundaries. In effect equation (2b) is evaluated predominantly at the location
where equation (2) is varying most rapidly and unpredictably. Bad cells tend to be located
away from the boundaries where (2) is relatively flat. Thus approximations are made in
the regions of P where the errors induced are likely to be small.

. . 462

Finally, any sub-region Q of the Poincaré section P can be investigated in a similar
fashion to the GOS method. This is because each evaluation of equation (2b) is in essence
the same as the GOS method. Cell mapping techniques cannot easily work with
sub-regions of P.

8. CONCLUSIONS

The improved RBE algorithm is a computational efficient algorithm for the description
of basins of attraction in non-linear dynamical systems. In the present studies the use of
a comparative module for defining ‘‘boundary cells’’ is discussed. The general conclusions
are that RBE module 3 produces results that are almost identical to the conventional GOS
method but at a great computational saving for differential systems. It is also clear that
this computational saving is increased as the cell resolution is increased. Hence if very high
resolution portraits of basins of attraction are required, RBE is the algorithm to use. RBE
modules 1 and 2 provide a method increasing computational speed at the expense of loss
of accuracy. Note, however, that RBE with any comparative module is never that
inaccurate. Studies in section 6 have indicated that RBE modules 1 and 2, in fractal and
non-fractal regimes, regardless of cell resolution, have a maximum deviation from the GOS
result of less that 0·3%. Also RBE modules 1 and 2 are generally exact under a non-fractal
regime. The only drawback of RBE is the complexity of the algorithm which is a problem
to implement. The Fortran 90 code and flowcharts are presented in the Appendix. It is
set up from Thompson’s escape equation. The compiled code for a PC can be found by
emailing N.A.Alexander.uel.ac.uk

While the GOS method is always going to be the researcher’s preferred solution when
computational speed is not paramount, RBE does provide an accurate and fast alternative.
In the comparison between RBE and the cell mapping method SCM and ICM, RBE
provides a much more accurate solution at equivalent computational efficiency. When
global stability events are investigated by monitoring the evolution of basins of attraction
under parameter change, RBE may prove a very useful tool.

ACKNOWLEDGMENTS

The author would like to thank Professor J. M. T. Thompson of University College
London for his guidance and advice. He would also like to thank the University of East
London for their support.

REFERENCES

1. J. M. T. T and H. B. S 1986 Nonlinear Dynamics and Chaos. Chichester: John
Wiley.

2. S. W. MD, C. G, E. O and J. A. Y 1985 Physica 17D, 125–153. Fractal
basin boundaries.

3. Y. U 1980 in: New Approaches to Nonlinear Problems in Dynamics (P. J. Holmes, editor).
Philadelphia, SIAM 311.

4. N. A. A 1989 Journal of Sound and Vibration 135, 63–77. Production of computational
portraits of bounded invariant manifolds.

5. M. S. S and J. M. T. T 1991 Applied Ocean Research 13, 82–92. Transient and
steady state analysis of capsize phenomena.

6. N. A. A 1995 Proceedings of the 6th International Conference on Civil and Structural
Engineering Computing, 29–35. Volume Developments in Computational Techniques for
Structural Engineering. Edinburgh, UK: Civil-Comp Press. Recursive boundary enhancement

- 463

(RBE) an algorithm for computational portraits of basin of attraction in non-linear dynamic
systems.

7. T. S. P and L. O. C 1989 Practical Numerical Algorithms for Chaotic Systems. New
York: Springer-Verlag.

8. N. A. A 1989 PhD Thesis, University College, London. Computational algorithms for
the global stability analysis of driven oscillators.

9. C. S. H 1987 Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems. New
York: Springer-Verlag.

10. B. H. T 1987 Physica 28D, 401–408. On obtaining global nonlinear system characteristic
through ICM.

APPENDIX A: FLOW DIAGRAMS AND CODE DESCRIPTION

The presented RBE code was written in Microsoft Fortran Powerstation and is as near
as possible to standard Fortran. Figures A1–A3 represent the flow schematic of the
algorithm. The graphics routines have been omitted since these are specific to the MS
compiler. This means that the user must supply the subroutine PLOT which graphically
displays the array ARRAY. ARRAY spans the region of phase space defined by the
rectangle (sXMIN,sYMIN) to (sXMAX,sYMAX). Each element of ARRAY is a cell and
for the escape equation an element value 0 indicates a solution trajectory leading to escape
while element value 1 indicates a stable solution. To customize the code to other dynamical
systems the subroutine EVAL2B must be supplied. The italicized COMMON and type
declaration statement will also have to be altered to supply the user defined EVAL2B with
the system variables.

APPENDIX B: MS FORTRAN POWERSTATION CODE

C --
C Recursive Boundary Enhancement
C ver 2.0 f32 Dr. N.A.Alexander 1994
C --

PROGRAM RBE
C recursive data list

PARAMETER(MAXSTORE=40000)
INTEGER*2 RX(MAXSTORE),RY(MAXSTORE)
INTEGER*4 DATACOUNT
COMMON /RECLIST/RX,RY,DATACOUNT

C general vars
INTEGER*2 S,I,J
INTEGER*4 KK

C arrays ARRAY .. cell array containing
C info on catchment basins
C FLAGS .. cell array containing
C good/bad non/boundary info

PARAMETER(SS=512)
INTEGER*1 ARRAY(SS,SS),FLAGS(SS,SS)
COMMON /ARRAY/ARRAY
COMMON /FLAGS/FLAGS
INTEGER MODE
COMMON /MODULE/MODE

C define system vars

M
A

IN
 S

E
G

M
E

N
T

R
B

E
 v

er
 2

.0

IN
P

U
T

 S
Y

S
T

E
M

V
A

R
IA

B
L

E
S

IN
IT

IA
L

IS
A

T
IO

N

C
E

L
L

 R
E

D
U

C
T

IO
N

L
O

O
P

E
N

D

D
IV

ID
E

 A
L

L
 C

E
L

L
S

L
O

O
P

C
A

L
L

 S
U

B
 S

T
O

R
E

D
IV

ID
E

 C
E

L
L

 &
C

R
E

A
T

E
 B

O
U

N
D

A
R

Y
C

E
L

L
 L

IS
T

N
E

X
T

 G
E

N
E

R
A

T
IO

N
B

O
U

N
D

A
R

Y
 C

E
L

L
D

E
T

E
C

T
IO

N
 L

O
O

P

C
A

L
L

 S
U

B
 C

H
E

C
K

C
H

E
C

K
S

 I
F

 C
E

L
L

 I
S

A
 B

O
U

N
D

A
R

Y
 C

E
L

L

C
A

L
L

 S
U

B
 P

L
O

T

P
L

O
T

 G
R

A
P

H
IC

S

R
E

C
U

R
S

IV
E

 P
A

R
T

O
F

 A
L

G
O

R
IT

H
M

2

3

1

4 5 6

. . 464

F
ig

ur
e

A
1.

M
ai

n
se

gm
en

t
of

al
go

ri
th

m
.

M
od

e
=

 1
M

od
e

=
 2

M
od

e
=

 3

S
U

B
R

O
U

T
IN

E
C

H
E

C
K

C
E

L
L

 A

L
O

O
P

J
=

1
 T

O
 4

*M
O

D
E

IS
 C

E
L

L
J

 A
N

D
 A

 O
N

T
H

E
 S

A
M

E
 S

ID
E

 O
F

T
H

E
 B

O
U

N
D

A
R

Y
?

C
A

L
L

 S
U

B
F

L
A

G
IN

Q
U

IR
E

C
E

L
L

 J

IS
 C

E
L

L
 J

N
O

N
-B

O
U

N
D

A
R

Y
C

E
L

L
?

C
A

L
L

 S
U

B
 S

E
T

F
L

A
G

S

C
E

L
L

 J
 M

A
R

K
E

D
 A

S
B

O
U

N
D

A
R

Y
 C

E
L

L

C
A

L
L

 S
U

B
 S

T
O

R
E

A
D

D
 C

E
L

L
 J

 T
O

B
O

U
N

D
A

R
Y

 C
E

L
L

L
IS

T

A
R

E
C

E
L

L
S

 A
 &

N
E

IG
H

B
O

U
R

IN
G

C
E

L
L

S
 O

N
 T

H
E

S
A

M
E

 S
ID

E
 O

F
B

O
U

N
D

A
R

Y
?

E
N

D

E
n

d
of

 l
oo

p
?

N
O

N
O

N
O

N
O

Y
E

S

Y
E

S

Y
E

S

Y
E

S

C
om

p
a

ri
so

n
 m

od
u

le
 1

C
om

p
a

ri
so

n
 m

od
u

le
 2

C
om

p
a

ri
so

n
 m

od
u

le
 3

2

1
3

4A

5
2

6

1
A

3

8
4

7

5
2

6

1
A

3

8
4

7

9
1

1

1
0

1
2

C
A

L
L

 S
U

B
 S

E
T

F
L

A
G

S

C
E

L
L

 A
 M

A
R

K
E

D
 A

S
N

O
N

-B
O

U
N

D
A

R
Y

 C
E

L
L

- 465

F
ig

ur
e

A
2.

Su
br

ou
ti
ne

C
H

E
C

K
.

S
U

B
R

O
U

T
IN

E
S

T
O

R
E

C
E

L
L

 J

IS
 C

E
L

L
 J

B
A

D
 B

O
U

N
D

A
R

Y
C

E
L

L
?

C
A

L
L

 S
U

B
F

L
A

G
IN

Q
U

IR
E

C
E

L
L

 J

IS
 C

E
L

L
 J

G
O

O
D

 B
O

U
N

D
A

R
Y

C
E

L
L

?

A
D

D
 C

E
L

L
 J

 T
O

B
O

U
N

D
A

R
Y

 C
E

L
L

L
IS

T

E
N

D

C
A

L
L

 S
U

B
s

E
V

A
L

U
A

T
E

E
q

u
a

ti
on

 (
2

b
)

fo
r

C
E

L
L

 J

S
E

T
A

R
R

A
Y

 &
S

E
T

F
L

A
G

S
fo

r
C

E
L

L
 J

N
O

N
O

Y
E

S

Y
E

S

. . 466

F
ig

ur
e

A
3.

Su
br

ou
ti
ne

ST
O

R
E

.

- 467

PARAMETER(PI=3.141592654D0)
REAL*8 AA,BB,sXMIN,sYMIN,sXMAX,sYMAX,DT
COMMON/SYSTEM/AA,BB,sXMIN,sYMIN,sXMAX,

* sYMAX,DT

C (1) Input System Variables
C Variable for escape equation
C AA=0.08D0
C BB=0.85D0
C sXMIN=−0.9D0
C sYMIN=−0.9D0
C sXMAX=1.2D0
C sYMAX=0.9D0
C DT=(2.D0*PI/BB)/40.D0
C MODE=3 Q-- Comparative Module 3

C (2) Initiatise cell size and set all cells
C to be Boundary cells
C

S=INT(SS / 8)
CALL SETARRAY(INT2(1),INT2(1),INT2(SS),

* INT2(1))
CALL SETFLAGS(INT2(1),INT(1),INT2(SS),

* INT2(1), INT2(0))
C

C (3) Cell Reduction Main Loop
C

DO WHILE (S.GT.1)
DATACOUNT =0

C

C (4) Divide all cells loop
C

DO I=1,SS−S+1,S
DO J=1,SS−S+1,S

CALL STORE(I, J, S)
END DO

END DO
C

C (5) CHECK that cells in recurcive list
C are actual boundary cells
C

KK=0
DO WHILE (KK.LT.DATACOUNT)

KK=KK+1
CALL CHECK(RX(KK),RY(KK),S)

END DO
C

C (6) User Define Sub For Graphics Output
C

CALL PLOT(ARRAY,S,SS)

. . 468

C Divide Cell by two and goto (3)
IF (S.GT.1) THEN

S=S/2
ELSE

S=−1
ENDIF

END DO
END

C --
SUBROUTINE CHECK(X,Y,S)

C --
INTEGER*2 X,Y,S
INTEGER*2 ACTUAL,BOUNDARY,J,CHECK1
INTEGER*2 XP(4),YP(4)
PARAMETER(SS =512)
INTEGER*1 ARRAY(SS,SS)
COMMON /ARRAY/ARRAY
INTEGER MODE
COMMON /MODULE/MODE
XP(1) = X + S
YP(1) = Y
XP(2) = X − S
YP(2) = Y
XP(3) = X
YP(3) = Y + S
XP(4) = X
YP(4) = Y − S
XP(5) = XUP
YP(5) = YUP
XP(6) = XUP
YP(6) = YDOWN
XP(7) = XDOWN
YP(7) = YUP
XP(8) = XDOWN
YP(8) = YDOWN

C
XP(9) = XUP + S
YP(9) = Y
XP(10) = XDOWN − S
YP(10) = Y
XP(11) = X
YP(11) = YUP + S
XP(12) = X
YP(12) = YDOWN − S

C
CHECK1=0
DO J=1,4*MODE

IF((XP(J).LE.SS).AND.(XP(J).GE.1).AND.
* (YP(J).LE.SS).AND.(YP(J).GE.1)) THEN

IF (IABS(ARRAY(X, Y)).NE.

- 469

* IABS(ARRAY(XP(J),YP(J)))) THEN
CHECK1=CHECK1+1
CALL FLAGINQUIRE(XP(J), YP(J), BOUNDARY,

* ACTUAL)
IF((BOUNDARY.EQ.INT2(0)).AND.

* (ACTUAL.EQ.INT2(0)))THEN
C Re-evaluate cell

CALL SETFLAGS(XP(J), YP(J), S, INT2(1),
* INT2(0))

CALL STORE(XP(J), YP(J), S)
ELSEIF((BOUNDARY.EQ.INT2(0)).AND.

* (ACTUAL.EQ.INT2(1)))THEN
C flag all squares in cell as boundary cell

CALL SETFLAGS(XP(J), YP(J), S, INT2(1),
* INT2(1))

CALL STORE(XP(J), YP(J), S)
ENDIF

ENDIF
ENDIF

END DO
C not a boundary cell

IF (CHECK1.LT.1) THEN
CALL FLAGINQUIRE(X, Y, BOUNDARY, ACTUAL)
CALL SETFLAGS(X, Y, S, INT2(0), ACTUAL)

ENDIF
RETURN
END

C --
SUBROUTINE EVALUATE(I,J,S,EVAL)

C --
INTEGER*2 I,J,S,II,F,EVAL
PARAMETER (SS=512)
INTEGER*1 ARRAY(SS,SS)
COMMON /ARRAY/ARRAY
REAL*8 XI,YI,XS,YS
REAL*8 AA,BB,sXMIN,sYMIN,sXMAX,sYMAX,DT
COMMON /SYSTEM/AA,BB,sXMIN,sYMIN,sXMAX,

* sYMAX,DT
C scale variables to window

XI = (I + 0.5) − 1
YI = (J + 0.5) − 1
XS = sXMIN + (sXMAX − sXMIN) * XI / DBLE(SS)
YS = sYMIN + (sYMAX − sYMIN) * YI / DBLE(SS)

C Evaluate Eqn (2b)
CALL EVAL2B(XS,YS,F)
EVAL = F
RETURN
END

C --
SUBROUTINE FLAGINQUIRE(X,Y,BOUNDARY,ACTUAL)

. . 470

C --
INTEGER*2 X,Y,BOUNDARY,ACTUAL
PARAMETER (SS=512)
INTEGER*1 FLAGS(SS,SS)
COMMON /FLAGS/FLAGS

C
C test first two bits of flag variable
C (bitwise storage reduces memory needed)
C bit 1 0 ... not boundary cell
C bit 1 1 ... boundary cell
C
C bit 2 0 ... not actual computation
C bit 2 1 ... actual computation
C

BOUNDARY = FLAGS(X, Y).AND.INT1(1)
ACTUAL = FLAGS(X, Y).AND.INT1(2)
IF(ACTUAL.GT.0)ACTUAL = 1
RETURN
END

C --
SUBROUTINE SETARRAY(X,Y,S,II)

C --
INTEGER*2 X,Y,S,II,I,J
PARAMETER (SS=512)
INTEGER*1 ARRAY(SS,SS)
COMMON /ARRAY/ARRAY
DO I = X,X + S − 1

DO J = Y, Y + S − 1
ARRAY(I,J) = II

END DO
END DO
RETURN
END

C --
SUBROUTINE SETFLAGS (X,Y,S,BOUNDARY,ACTUAL)

C --
INTEGER*2 X,Y,S,BOUNDARY,ACTUAL,I,J
PARAMETER (SS=512)
INTEGER*1 FLAGS(SS,SS)
COMMON /FLAGS/FLAGS
DO I = X,X + S − 1

DO J = Y,Y + S − 1
FLAGS(I, J) = BOUNDARY

END DO
END DO

C flag corner only with actual calculation mark.
FLAGS(X, Y) = BOUNDARY + ACTUAL * INT2(2)
RETURN
END

C --

- 471

SUBROUTINE STORE(X,Y,S)
C --

INTEGER*2 X,Y,S,BOUNDARY,ACTUAL,EVAL
PARAMETER(MAXSTORE =40000)
INTEGER*2 RX(MAXSTORE),RY(MAXSTORE)
INTEGER*4 DATACOUNT
COMMON /RECLIST/RX,RY,DATACOUNT

C
C subroutine to mark cells that have been changed
C to boundary cells and add to recursive list
C

CALL FLAGINQUIRE(X, Y, BOUNDARY, ACTUAL)
C

IF ((BOUNDARY.EQ.INT2(1)).AND.
* (ACTUAL.EQ.INT2(0)))THEN

DATACOUNT = DATACOUNT + 1
IF(DATACOUNT.GT.MAXSTORE)THEN

STOP'DATASTORE ARRAY LIMIT EXCEEDED'
ENDIF
RX(DATACOUNT) = X
RY(DATACOUNT) = Y
CALL EVALUATE(X, Y, S, EVAL)
CALL SETARRAY(X, Y, S, EVAL)
CALL SETFLAGS(X, Y, S, 1, 1)

ELSEIF((BOUNDARY.EQ. INT2(1)).AND.
* (ACTUAL.EQ.INT2(1)))THEN

DATACOUNT = DATACOUNT + 1
IF(DATACOUNT.GT.MAXSTORE)THEN

STOP'DATASTORE ARRAY LIMIT EXCEEDED'
ENDIF
RX(DATACOUNT) = X
RY(DATACOUNT) = Y

ENDIF
RETURN
END

C --
C C SUBROUTINE EVAL2B(X,Y,F)
C --
C This sub must be supplied by the user given a
C start (x,y) it calculates equation (2b) and F is the
C numbered catchment basin (x,y) belongs to. The
C following is given for the escape equation

INTEGER I,F,IFAIL
REAL*8 X,Y
F=1
DO I=1,10

CALL RUNGA(X,Y,IFAIL)
IF(IFAIL.EQ.1)THEN

F=0
EXIT

. . 472

ENDIF
END DO
RETURN
END

C SUBROUTINE RUNGA(XN,YN,IFAIL)
REAL*8 XN,YN,TN,X,Y,T,K1,M1,K2,M2,K3,M3,K4,M4
REAL*8 AA,BB,sXMIN,sYMIN,sXMAX,sYMAX,DT
INTEGER*2 I,IFAIL
COMMON /SYSTEM/AA,BB,sXMIN,sYMIN,sXMAX,

* sYMAX,DT
IFAIL=0
TN = 0.D0
DO I=1,40

X = XN
Y = YN
T = TN
CALL EQUAT (X, Y, T, K1, M1)
X = XN + M1 * 0.5D0
Y = YN + K1 * 0.5D0
T = TN + DT * 0.5D0
CALL EQUAT (X, Y, T, K2, M2)
X = XN + M2 * 0.5D0
Y = YN + K2 * 0.5D0
CALL EQUAT (X, Y, T, K3, M3)
X = XN + M3
Y = YN + K3
T = TN + DT
CALL EQUAT (X, Y, T, K4, M4)
YN=YN+(K1+2.D0*K2+2.D0*K3+K4)/6.D0
XN=XN+(M1+2.D0*M2+2.D0*M3+M4)/6.D0
TN = TN + DT
IF (DABS(XN) + DABS(YN).GT.10.D0)THEN

IFAIL=1
EXIT

ENDIF
END DO
RETURN
END

C SUBROUTINE EQUAT (X, Y, T, K, M)
REAL*8 X,Y,T,K,M
REAL*8 AA,BB,sXMIN,sYMIN,sXMAX,sYMAX,DT
COMMON /SYSTEM/AA,BB,sXMIN,sYMIN,sXMAX,

* sYMAX,DT
K = DT*(AA*DSIN(BB*T) −0.1D0*Y−X+X*X)
M = DT*Y
RETURN
END

